A Generalized Approach to Construct Benchmark Problems for Dynamic Optimization
نویسندگان
چکیده
There has been a growing interest in studying evolutionary algorithms in dynamic environments in recent years due to its importance in real applications. However, different dynamic test problems have been used to test and compare the performance of algorithms. This paper proposes a generalized dynamic benchmark generator (GDBG) that can be instantiated into the binary space, real space and combinatorial space. This generator can present a set of different properties to test algorithms by tuning some control parameters. Some experiments are carried out on the real space to study the performance of the generator.
منابع مشابه
Benchmark Generator for the IEEE WCCI-2014 Competition on Evolutionary Computation for Dynamic Optimization Problems Dynamic rotation peak benchmark generator (DRPBG) and Dynamic composition benchmark generator (DCBG)
Many realworld optimization problems are dynamic optimization problems (DOPs), where changes may occur over time regarding the objective function, decision variable, and constraints, etc. DOPs raise big challenges to traditional optimization methods as well as evolutionary algorithms (EAs). The last decade has witnessed increasing research efforts on handling dynamic optimization problems using...
متن کاملClustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization
So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...
متن کاملIntroducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems
The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...
متن کاملBenchmark Generator for the IEEE WCCI-2012 Competition on Evolutionary Computation for Dynamic Optimization Problems
Many realworld optimization problems are dynamic optimization problems (DOPs), where changes may occur over time regarding the objective function, decision variable, and constraints, etc. DOPs raise big challenges to traditional optimization methods as well as evolutionary algorithms (EAs). The last decade has witnessed increasing research efforts on handling dynamic optimization problems using...
متن کاملChaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کامل